فضاهای متری کشسان
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی
- نویسنده زهرا یاری
- استاد راهنما محمدرضا کوشش مجید گازر
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1393
چکیده
در این پایان نامه، ویژگی جالبی از فضاهای متری به نام کشسان پذیری را بررسی خواهیم کرد. فضاهای متری کشسانی را می توان به انواع انبساطی-انقباضی، غیر انبساطی-انقباضی و انقباضی-انبساطی تقسیم بندی کرد. فضاهای کشسان انبساطی-انقباضی دارای این ویژگی هستند که هر تابع دو سویی و غیر انقباضی از این فضا به خودش، طولپایی است. فضاهای متری را که انبساطی-انقباضی نیستند، فضاهای کشسان غیر انبساطی-انقباضی می نامیم. فضاهای کشسان انقباضی-انبساطی نیز فضا ها یی هستند که هر تابع پوشا و غیر انبساطی از این فضا به خودش، طولپایی باشد. در این پایان نامه، به روی فضاهای کشسان انبساطی-انقباضی متمرکز خواهیم شد و البته فضاهای کشسان غیر انبساطی-انقباضی نیز در کنار آن پوشش داده خواهند شد؛ چرا که انگیزه ی تعریف موضوع در این پایان نامه به فضاهای انبساطی-انقباضی مربوط می شود. در پایان مباحث دیگری از جمله « خواصّ کشسان پذیری در مجموعه ها» و «فضاهای کشسان انبساطی-انقباضی موروثی» نیز بررسی خواهند شد
منابع مشابه
فضاهای شبه متری و شبه متری فازی
در این پایان نامه، مفهوم فضاهای شبه متری و فضاهای شبه متری فازی و مسیله پیدا کردن تعریف مناسب از کامل بودن برای این فضاها مورد بررسی قرار گرفت. برای حل مسیله، اتدا تعریف مناسبی از دنباله کوشی در فضاهای شبه متری ارایه می گردد. سپس، با استفاده از این مطلب که یک فضای شبه متری، کامل است اگر هر دنباله کوشی در آن همگرا باشد به چگونگی ساختن یک کامل شده از فضای شبه متری پرداخته می شود. و در انتها این ...
15 صفحه اولمترپذیری فضاهای متری مخروطی
در این پایان نامه ابتدا برخی خواص پایه ای فضاهای متری مخروطی را بیان می کنیم سپس نشان می دهیم هر متر مخروطی d روی x یک توپولوژی روی x القا می کند و این توپولوژی مترپذیر است. یعنی متر x×x?r:? وجود دارد که و توپولوژی یکسان روی x القا می کنند. در ادامه مثال هایی از مترهای معمولی که در این خاصیت صدق می کند بیان می شود و در آخر برخی از قضایای نقطه ثابت را مورد بررسی قرار می دهیم.
پایداری تکرار پیکارد در فضاهای متری مخروطی
این پایان نامه به بررسی مسأله ی t– پایداری روش های تکرار در فضاهای متریک مخروطی می پردازد که شامل 3 فصل می باشد. در فصل اول تعاریف و قضایایی بیان شده که در فصل های بعد، مورد استفاده قرار می گیرد. فصل دوم به مطالبی راجع به مسأله ی t– پایداری روش تکرار پیکارد اختصاص دارد که مشتمل بر 3 بخش است. در بخش اول به t– پایداری روش تکرار پیکارد در فضاهای متریک می پردازیم. بخش دوم، به t– پایداری روش تکرار...
15 صفحه اولگسترش های تک نقطه ای فضاهای متری
اگر فضای متری x در فضای متری y چگال باشد، آنگاه فضای y را یک گسترش متری از x گوییم. اگر t_1 و t_2 دو گسترش متری از x باشند و نگاشتی پیوسته از t_2 به t_1 وجود داشته باشد بطوریکه روی x همانی باشد، می نویسیم t_1?t_2. اگر x یک فضای متری نافشرده باشد، آنگاه (m(x),?) مجموعه ی همه ی (کلاس های هم ارزی) گسترش های متری x را مشخص می کند، که در آن t_1 و t_2 معادلند هرگاه t_1?t_2 و t_2?t_1، یعنی اگر یک همان...
قضایای نقطه ثابت در فضاهای متری مخروطی
در این پایان نامه ابتدا به معرفی فضاهای متری مخروطی کامل می پردازیم و سپس برخی از قضایای نقطه ثابت را که در فضاهای متری (معمولی) برقرار است برای فضاهای متری مخروطی بیان و اثبات می کنیم. در ادامه از این حقیقت بهره می گیریم که تحت شرایطی یک فضاهای متری مخروطی(x,d) مترپذیر است یعنی متر? وجود دارد که (x,d) و (?x,) دنباله های کوشی و دنباله های همگرای یکسان دارند. لذا برخی از قضایای نقطه ثابت در فضاه...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023